Comparison of Wind Energy Generation Using the Maximum Entropy Principle and the Weibull Distribution Function
نویسندگان
چکیده
Proper knowledge of the wind characteristics of a site is of fundamental importance in estimating wind energy output from a selected wind turbine. The present paper focuses on assessing the suitability and accuracy of the fitted distribution function to the measured wind speed data for Baburband site in Sindh Pakistan. Comparison is made between the wind power densities obtained using the fitted functions based on Maximum Entropy Principle (MEP) and Weibull distribution. In case of MEP-based function a system of (N+1) non-linear equations containing (N+1) Lagrange multipliers is defined as probability density function. The maximum entropy probability density functions is calculated for 3–9 low order moments obtained from measured wind speed data. The annual actual wind power density (PA) is found to be 309.25 W/m2 while the Weibull based wind power density (PW) is 297.25 W/m2. The MEP-based density for orders 5, 7, 8 and 9 (PE) is 309.21 W/m2, whereas for order 6 it is 309.43 W/m2. To validate the MEP-based function, the results are compared with the Weibull function and the measured data. Kolmogorov–Smirnov test is performed between the cdf of the measured wind data and the fitted distribution function (Q95 = 0.01457 > Q = 10−4). The test confirms the suitability of MEP-based function for modeling measured wind speed data and for the estimation of wind energy output from a wind turbine. R2 test is also performed giving analogous behavior of the fitted MEP-based pdf to the actual wind speed data (R2 ~0.9). The annual energy extracted using the chosen wind turbine based on Weibull function is PW = 2.54 GWh and that obtained using MEP-based function is PE = 2.57–2.67 GWh depending on the order of moments.
منابع مشابه
Analysis of prediction models for wind energy characteristics, Case study: Karaj, Iran
Iran is a country completely dependent on fossil fuel resources. In order to obtain a diversity of energy sources, it requires other resources, especially renewable energy. Utilization of wind energy appears to be one of the most efficient ways of achieving sustainable development. The quantification of wind potential is a pivotal and essential initial step while developing strategies for the de...
متن کاملComparison of entropy generation minimization principle and entransy theory in optimal design of thermal systems
In this study, the relationship among the concepts of entropy generation rate, entransy theory, and generalized thermal resistance to the optimal design of thermal systems is discussed. The equations of entropy and entransy rates are compared and their implications for optimization of conductive heat transfer are analyzed. The theoretical analyses show that based on entropy generation minimizat...
متن کاملPlacement and Sizing of Various Renewable Generations in Distribution Networks with Consideration of Generation Uncertainties using Point Estimate Method
Abstract: Deploying Distributed Generation (DG) units has increased due to yearly increase of electric energy demand and technological advancements beyond Smart Grid. Although, DGs offer several advantages such as reducing economic costs and environmental impacts, the operation of these units in power systems creates several problems. In this paper, optimal allocation and sizing of DG units in ...
متن کاملWind resource assessment of Khuzestan province in Iran
In this research paper, a 10 minute period measured wind speed data at 10 m, 30 m, and 40 m heights are presented for one of the major provinces of Iran. Four stations in Khuzestan- Abadan, Hosseyneh, Mahshahr, and Shushtar- are analyzed to determine the potential of wind power generation in this province. From the primary evaluation and by determining mean wind speed and also the Weibull f...
متن کاملWind resource assessment of Khuzestan province in Iran
In this research paper, a 10 minute period measured wind speed data at 10 m, 30 m, and 40 m heights are presented for one of the major provinces of Iran. Four stations in Khuzestan- Abadan, Hosseyneh, Mahshahr, and Shushtar- are analyzed to determine the potential of wind power generation in this province. From the primary evaluation and by determining mean wind speed and also the Weibull f...
متن کامل